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Orientational dynamics of ferrofluids with finite magnetic anisotropy of the particles:
Relaxation of magneto-birefringence in crossed fields
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Dynamic birefringence in a ferrofluid subjected to crossed bias~constant! and probing~pulse or ac! fields is
considered, assuming that the nanoparticles have finite magnetic anisotropy. This is done on the basis of the
general Fokker-Planck equation that takes into account both internal magnetic and external mechanical degrees
of freedom of the particle. We describe the orientation dynamics in terms of the integral relaxation time of the
macroscopic orientation order parameter. To account for an arbitrary relation between the bias~external! and
anisotropy~internal! fields, an interpolation expression for the integral relaxation time is proposed and justified.
A developed description is used to interpret the measurements of birefringence relaxation in magnetic fluids
with nanoparticles of high~cobalt ferrite! and low~maghemite! anisotropy. The proposed theory appears to be
in full qualitative agreement with all the experimental data available.
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I. INTRODUCTION

Dynamic field-induced birefringence is a well-known e
perimental tool to study magnetic fluids~MFs!, see Ref.@1#,
for example. The majority of the known facts agree with t
hypothesis that the ferrite nanoparticles constituting the s
phase of a MF have a slightly anisometric shape. This in
a simple generic mechanism of the field-induced birefr
gence. The external field orients the particle magnetic m
ments, and, via them, the particles themselves, thus es
lishing in a MF an orientational order. Therefore, a syste
which ~due to the Brownian rotary motion of the particle!
was isotropic in the field-free state, acquires a macrosco
uniaxial optical anisotropy. Since the magnetic moments
the particles are much greater than atomic or molecular o
the resulting birefringence by several orders exceeds
usual Cotton-Mouton effect in liquids and is observed a
registered easily.

The description of the orientational mechanism of M
birefringence is based on the orientation-dependent magn
energy of a single-domain particle subjected to a magn
field H5Hh, that is,

U52IVmH~e•h!2Ea~e•n!2, ~1!

whereI is the magnetization of the particle substance ande is
the unit vector of the magnetic moment, i.e.,m5IVme,
where Vm is the volume of the ferromagnetic core of th
particle. In highly dispersed systems, like MFs, due to
surface effectsVm is smaller than the total physical volumeV
of the grain. In Eq.~1! Ea.0 is the energy of uniaxial mag
netic anisotropy, andn the unit vector of the easy axis. The
exist at least three well-proven sources ofEa : volumetric
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crystallographic, shape, and surface anisotropies. For a d
MF in equilibrium, an exhaustive description of the macr
scopic properties, including the orientational-optical ones
achieved by substituting the energy~1! in the Gibbs distribu-
tion function.

In a dynamic situation the induced orientational ord
~and, consequently, birefringence! of a MF evolves with the
response time~s! of the particles. The appropriate theoretic
approach was developed in Ref.@2#. On equal basis it takes
into account the effects of both internal~magnetic! and ex-
ternal ~mechanical! orientational relaxations of the particle
on the birefringence in a MF. Besides uniting several form
approximate models of Refs.@3–5#, the new theory covers a
variety of intermediate cases formerly unaccessible. The
ticular problem considered in Ref.@2# was the birefringence
induced in a MF by a linearly polarized weak ac field. In t
present study we extend the theory to the case of a MF s
jected to a combination of mutually perpendicular const
~bias! and pulse or ac~probing! magnetic fields. This con-
figuration has been recently realized experimentally a
tested for both highly anisotropic and low-anisotropic ferrit
in a wide range of bias-field strengths@6#. On the basis of the
developed theory we analyze the obtained field strength
frequency dependencies of the dynamic birefringence.

The paper is organized as follows. Section I prese
some reasoning on the problem and introduces the gen
Fokker-Plank equation that accounts for the joint orien
tional motion of the mechanical and magnetic degrees
freedom of a particle with finite magnetic rigidity. In Sec.
an account on birefringence in a MF of magnetically ha
~infinitely rigid! nanoparticles is given and the concept of t
integral relaxation time is introduced. Section III is the ma
theoretical one. There the dynamic birefringence in a M
with particles of finite magnetic anisotropy is described
terms of a single~integral! relaxation time and a method fo
its approximate evaluation is proposed and justified. Sec
IV discusses the obtained results and their comparison to
experimental data available. The paper ends by overall c
©2002 The American Physical Society03-1
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clusions and contains an appendix, where the main ma
equation, too long to be included in the text, is given.

II. GENERAL CONSIDERATIONS

In MFs the phenomenon of dynamic birefringence,
compared to conventional molecular optics, is somew
unique. Indeed, a single-domain particle of nanoscopic
is superparamagnetic. That means that its magnetic mom
is not rigidly bonded to the anisotropy~and thus, geometric!
axis but is subjected to internal rotary diffusion. Hence,
response of a MF~as an assembly of such particles! to an
external field is a combination of two relaxational process
One is the orientation of the assembly of magnetic mome
m, i.e., the magnetization of the suspension. The other is
orientation of the particle axesn, which strive to minimize
the magnetic anisotropy energy by their mechanical rota
towards the new position ofm. This latter motion is in fact
the direct cause of birefringence.

Being of different origins, those relaxational process
have different time scales. For the magnetic degrees of f
dom in the absence of an external field, it is the time
internal superparamagnetic diffusiontD . For the mechanica
ones it is the time of mechanical rotary diffusiontB of a
particle in a carrier liquid. Remarkably, both parameters
be presented in a similar form@7#,
f
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tB53hV/kT, tD53hmVm /kT, ~2!

whereh is the viscosity of the carrier liquid, andkT is the
temperature in energy units. If one conventionally descri
the motion of the particle magnetic moment by the Land
Lifshitz equation, the ‘‘magnetic viscosity’’ in Eq.~2! writes
hm5I /6ag, whereg is the gyromagnetic ratio for electron
anda the dimensionless rate of spin-lattice relaxation.

Let us define the orientation order parameter of a susp
sion in a tensor form as

Sik5
3

2 F ^nink&2
1

3
d ikG , ~3!

assuming that the easy axis of the particle coincides with
optical axis. In a dilute suspension, the tensorSik is propor-
tional to the refraction index tensor and, thus, determines
optical anisotropy of the particle assembly. Accordingly, t
angular brackets in Eq.~3! denote statistical averaging wit
the orientational distribution functionW(e,n,t) of the par-
ticle. The evolution of this function is given by the extend
Fokker-Planck equation, whose configurational spacee^ n is
a direct product of two two-dimensional vector spaces. T
equation was derived in Refs.@8–10# for arbitrary tB and
tD . In the absence of a bulk flow of a MF it reads
]

]t
W1 Ĵe"VLW5H 1

2tB
~ Ĵe1 Ĵn!W~ Ĵe1 Ĵn!1

1

2tD
ĴeWĴeJ ~U/kT1 ln W!. ~4!
f
tri-

n

ec-
te
Here Ĵe5(e3]/]e) and Ĵn5(n3]/]n) are the operators o
infinitesimal rotations in the corresponding vector spac
and the precession~Larmor! frequency of the magnetic mo
ment is defined in a vector form as

VL52~g/IVm!~]U/]e!.

In the absence of an external magnetic field, the solution
Eq. ~4! factorizes as

W~e,n,t !5We~e•n,t !Wn~n,t !, ~5!

where We is the orientational distribution of vectore with
respect to the anisotropy axisn and Wn is the orientational
distribution of vectorn with respect to the laboratory coo
dinate framework. For representation~5! the equations tha
govern the distribution functions separate and become s
contained. The equation for the internal degrees of freed
is

2tD

]We

]t
5 ĴeWeĴe@2s~e•n!21 ln We#, ~6!
s,

of

lf-
m

where s5Ea /kT is the height of the potential barrier o
magnetic anisotropy scaled with temperature. For the dis
bution function of the external rotations one gets

2tB

]Wn

]t
5 Ĵn

2Wn , ~7!

which is a standard rotary diffusion equation. Both Eqs.~6!
and~7! are well known in the theory of the rotary Brownia
motion. The eigenfunctions of Eq.~7! are the ‘‘external’’
spherical harmonics, i.e., the functions of the angles that v
tor n makes with some axis of the laboratory coordina
framework that is defined by a unit vectorz,

Wn~q,f,t !5( Xl
m~n,z!exp@2 l ~ l 11!t/tB#. ~8!

For the solution of Eq.~6! the basis of ‘‘internal’’ spherical
harmonics

We~u,w,t !5(
l 50

`

(
m52 l

l

bl ,m~ t !
2l 11

4p

3
~ l 2umu!!
~ l 1umu!!

Xl
m* ~e,n! ~9!
3-2
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was proposed in Ref.@11#. In Eqs. ~8! and ~9! symbols
Xl

m(a,b) denote the so-called non-normalized spherical h
monics defined as

Xl
m~a,b!5Pl

m~cosa!eimb, ~10!

where Pl
m are the associated Legendre polynomials. T

anglesa andb are the coordinates of the unit vectora in the
spherical framework with the polar axis set along the u
vector b. Functions~10! are connected to the conventiona
normalized, spherical harmonics by the relationship

Yl
m5A2l 11

4p

~ l 2umu!!
~ l 1umu!!

Xl
m . ~11!

As soon as a magnetic field is applied, it couples
internal and external degrees of freedom of the particle,
the variables in the kinetic equation~4! become inseparable
Due to that, the solution should be constructed in the fu
tional space formed by direct products of the ‘‘internal’’ an
‘‘external’’ harmonics. A suitable representation for this ca
is

W~e,n,t !5(
l 51

`

(
l 851

`

(
m52 l 8

l 8

Ql ,l 8
m,m8~ t !

~2l 11!~ l 2umu!!
4p~ l 1umu!!

3Xl
m* ~e,n!

~2l 811!~ l 82um8u!!

4p~ l 81um8u!!
Xl 8

m8* ~n,h!,

~12!

where the time dependence is now determined by the f
index coefficients

Ql ,l 8
m,m8~ t !5^Xl

m~e,n!Xl 8
m8~n,h!&. ~13!

Note that vectorh, being imposed in the laboratory frame
work, in a natural way takes the place of the formerly ar
trary unit vectorz in the subset of the ‘‘external’’ harmonics

Substitution of expansion~12! in Eq. ~4! and subsequen
integration with respect toe andn, results in an infinite set o
differential recurrence relations from which the coefficien

Ql ,l 8
m,m8 may be found by a numerical procedure. The gene

form of the emerging set of equations is given in the App
dix. The quantity of our main interest there is the equation
motion for the element

Q0,2
0,15^3 cosq sinq cosf&, ~14!

which is the spherical representation of the only compon
of the orientation order parameter~3! excited by the probing
field in the crossed-field configuration. As mentioned, it
proportional to the observed birefringence. Accordingly,
square is proportional to the registered intensity of the tra
mitted light.
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III. HARD-DIPOLE PARTICLES

First, we consider a crossed-field birefringence in t
framework of a simple model, where internal magnetic d
grees of freedom are ‘‘frozen,’’ i.e., for the case of har
dipole particles. This limit means that we setEa in Eq. ~1! to
infinity, or, equivalently, sete5n in the energy~1! reducing
it to

U52mH~e"h!, ~15!

where the value of the particle magnetic momentm5IVm is
assumed to be constant. The stationary distribution func
of an assembly of noninteracting magnetic moments in
constant fieldH05H0h is determined by the Gibbs expre
sion

W0~e!5
j0

4p sinhj0
exp@j0~e•h!#, ~16!

where the Langevin argument associated with the bias fi
H0 is

j05mH0 /kT. ~17!

For the hard-dipole case the Fokker-Planck equation~4!
reduces to

2tB

]

]t
W5 ĴWĴS U

kT
1 ln WD , ~18!

where the distribution functionW(e,t) does not depend on
the anisotropy parameters and the rotation operator iĴ
[ Ĵe. Denoting the spherical coordinates of the unit vectore
and h as (u, w) and (0,0), respectively, one expands t
solution of the kinetic equation~18! in spherical harmonics
as

W~u,w,t !5(
l 50

`

(
m52 l

l

bl ,m~ t !
2l 11

4p

3
~ l 2umu!!
~ l 1umu!!

Xl
m* ~e,h!, ~19!

where the variables are separated and the time dependen
determined by the functions

bl ,m~ t !5^Pl
m~cosu!eimw&, ~20!

with the angular brackets denoting statistical averaging w
the distribution functionW found from Eq.~18!. Note that
for hard dipoles, due to the reduction of the configuratio
space, we use a two-index notationbl ,m instead of the gen-
eral four-index one defined by Eq.~13!.

As the probing fieldH is perpendicular to the bias fiel
H0, the only nonzero perturbations are the functionsbl ,1 ,
which may be found from the chain-linked set
3-3
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2tB

d

dt
bl ,11 l ~ l 11!bl ,12

j0

~2l 11!
@~ l 11!2bl 21,12 l 2bl 11,1#

5
l ~ l 11!

2l 11
@~ l 11!Ll 21~j0!1 lL l 11~j0!#j, ~21!

obtained by substitution of expansion~19! into Eq.~18!; here
j5mH/kT should be regarded as the dimensionless prob
field. Of the whole set$bl ,1% the issues of main interest are i
first two components. Indeed,b1,1 is the spherical represen
tation of the normalized magnetization~perpendicular toH0)
while b2,1 is the spherical component of the orientation ord
parameter which is responsible for the optical birefringen
excited by the probing field.

A. Weak bias field

Throughout this study we use the linear-response the
assuming that the probing field is weak in the sense that
ratio j5mH/kT is always much less than unity. As the sta
ing point we set the bias to be weak as well, i.e.,j0;j!1.
Expanding the matrix set~21! to the next-to-the-lowest orde
in the field strengths~which means that we neglectb3,1,
jb2,1, j2b1,1, etc.! we arrive at a closed set of two equation

tB

d

dt
b1,11b1,150, tB

d

dt
b2,113b2,12

9j0

10
b1,150,

~22!

which ties up the increments of magnetization and orien
tion. The initial conditions for this set are taken in the for

b1,1~0!5
2

3
j, b2,1~0!5

2

5
jj0 , ~23!

which means that the system dwells in equilibrium in t
presence of the crossed fieldsH andH0 until the momentt
50 whenH is turned off. For the corresponding transie
process the solution of Eqs.~22! is

b1,1~ t !5
2

3
je2t/tB,

b2,1~ t !5
1

10
jj0~3e2t/tB1e23t/tB!. ~24!

Thus, one sees that the vector modeb1,1 coincides with the
eigenmode of the set~22!, while the tensor modeb2,1 turns
out to be a superposition of two eigenmodes. Moreove
turns up thatb2,1(t), i.e., the field-induced birefringence in
suspension of hard dipoles, contains a considerable cont
tion that decays with the rate of the vector modeb1,1, i.e.,
magnetization. This significant fact had been discove
quite a time ago in the molecular electro-optics, see the
sults of Ref.@12#, where an obvious substitution of magn
tization instead of electric polarization should be done.

As follows from Eqs.~24!, even in a weak bias field
relaxation of birefringence is a multimode process. The m
so this applies to the cases where the bias field is finite
simple and convenient way to characterize and compare m
02120
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timode processes is to use the so-calledintegral relaxation
time ~IRT!. For a decay process it is defined as the tim
integral of the response function under study taken from
moment t50 to infinity and divided by the value of the
relaxing quantity att50,

t int
( l )5@bl ,1~0!#21E

0

`

bl ,1 dt. ~25!

A significant merit of IRT is that it incorporates contribution
of all the modes of the system spectrum. As mentioned,
subjects of our interest are the modes withl 51 ~vector! and
l 52 ~second-rank tensor!. Applying definition ~25! to the
transient processes described by Eqs.~24!, we find

t int
(1)5tB , t int

(2)5
5

6
tB . ~26!

It is worthwhile to remark once again the difference wi
the case of a field-free (j050) system, where all the relax
ation eigenmodes decouple. There the integral times coin
with the inverses of the respective eigenvalues and instea
Eqs. ~26! one hast int

(1)5tB and t int
(2)5tB/3. Formally this

means that in a field-free system birefringence decays
times faster than in a system with an applied bias field, ho
ever weak the latter is. This is a well-known paradox
orientational optics of dipolar systems found and elucida
by Ullman, see Ref.@12#. Not repeating the exhaustive ex
planation given in the original paper, we just remind its k
point: with j0→0 the initial condition~23! for the orienta-
tion order parameterb2,1 also tends to zero. In other word
at j050 there is no linear contribution in birefringence, th
rapidly decaying mode does not exist withoutj0. In the zero
bias~field-free! case the birefringence expansion begins w
the term quadratic in the probing fieldj, and this perturba-
tion indeed decays with the timetB/3.

B. Arbitrary bias field

If the bias field is not weak, the evolution of anybl ,1
becomes a multimode process. However, for the vec
~magnetization! mode a good single-time approximation
provided by the expression

teff
(1)5

2L1~j0!

j02L1~j0!
tB , ~27!

derived in Ref.@13#; hereL1 is the Langevin function.
Let us obtain a similar characteristic for the tensor~orien-

tation order parameter! mode using the concept of the inte
gral relaxation time introduced by Eq.~25!. To do that, it is
convenient to perform time integration of Eq.~21!. Setting
therej50 ~the probing field switched off!, one gets

2tBbl ,1~0!5 l ~ l 11!Fl2
j0

~2l 11!
@~ l 11!2Fl 212 l 2Fl 11#,

~28!
3-4



tia

od

.
a

Fi

-

-

r

es

es of

n-

a

un-
uc-

he
ith
ion

nck

tion

Eq.

tion
em

les

r

mo-
tic

es

r
n

ORIENTATIONAL DYNAMICS OF FERROFLUIDS WITH . . . PHYSICAL REVIEW E 66, 021203 ~2002!
where we denote

Fl[E
0

`

bl ,1 dt. ~29!

The left-hand side of Eq.~28! is built of the initial condition,
i.e., is determined by an equilibrium average over the ini
state of the system, where bothH0 and H exist. For small
probing fields, expansion with respect toj yields

bl ,1~0!5 l ~ l 11!Ll~j0!~j/j0!, ~30!

whereLl is the Langevin function ofl order defined as

Ll5ZL
21E

21

1

Pl~x!exp~j0x!dx, ZL5sinhj0 /j0 .

With the same accuracy inj, the coefficientsFl defined by
Eq. ~29! may be presented in the formFl5j f l , where now
functions f (j0) do not depend onj. Then the set~28! re-
writes as

2tBl ~ l 11!
Ll~j0!

j0
5 l ~ l 11! f l2

j0

~2l 11!
@~ l 11!2f l 21

2 l 2f l 11#, ~31!

and is solved numerically by the continuous fraction meth
as described in Ref.@14#. For l 52, the integral relaxation
time ~25! in view of Eq. ~30! takes the form

t int
(2)5

j0f 2

6L2~j0!
tB . ~32!

Since the orientation relaxation timet (2) was derived in the
linear-response approximation, Eq.~32! is equally appropri-
ate for the situations where the probing field is turned on

The numerical results for the integral relaxation times
the functions of the bias-field strength are presented in
1, together with the effective dipole~vector! relaxation time
~27!. One sees that at smallj0 ~weak fields and/or high tem

FIG. 1. Comparison of the characteristic relaxation tim
Dashed curve, the effective relaxation timeteff

(1) of magnetization
according to Eq.~27!; thin solid curve, integral relaxation time
t int

(1)5F1 /b1,1(0) of magnetization~modeb1,1); thick solid curve,
integral relaxation timet int

(2) of the orientation order paramete
~mode b2,1); dashed-dotted curve, relaxation time of the seco
eigenmode of Eq.~21!.
02120
l

,

s
g.

peratures! the limit of the integral relaxation time of birefrin
gence ist int

(2)55tB/6, as given by Eq.~26!. This results from
transforming via Eq.~25! the superposition~24! of the two
eigenmodes of the set~22!. At j0→0 the decay times~in-
verse eigenvalues! of these modes are, respectively,tB and
tB/3; their relative weights~components in the eigenvecto
space! in the tensor modeb2,1 are 3/4 and 1/4.~As men-
tioned, in this approximation the first eigenmode coincid
with the vector modeb1,1.) Under the bias field, both the
eigenvalues and eigenvectors change, causing the chang
the integral times. In Fig. 1 the curve rendering thej0 de-
pendence of the integral relaxation time for the first eige
mode and the lineteff

(1) practically overlap. The relaxation
time of the second eigenmode is shown in Fig. 1 by
dashed-dotted line. Monotonically withj0, the contribution
of the first eigenmode to the tensor modeb2,1 grows so that
at highj0 ~high magnetic fields and/or low temperatures! the
integral time of orientation approachest int

(1) and teff
(1) so that

all three curves unite at the same asymptote}tB /j0. There-
fore, one concludes that in a suspension of hard dipoles
der the crossed-field configuration with the decrease of fl
tuations the relaxation rate of the orientation~birefringence!
coincides with that of the magnetization.

IV. DIPOLAR PARTICLES WITH FINITE MAGNETIC
ANISOTROPY

Now we proceed to the principal issue of the study: t
dynamic birefringence in an assembly of nanoparticles w
finite magnetic anisotropy that is subjected to a combinat
of a constant~bias! and a pulse or ac~probing! magnetic
fields. This case is described by the general Fokker-Pla
equation~4! whose solution is presented by expansion~12!.
As mentioned at the end of Sec. II, we focus on the equa
for the orientation order parameterQ0,2

0,1. Extracting the per-
tinent line from the complete set of matrix equations, see
~A1! of the Appendix, we get

2tB

d

dt
Q0,2

0,116Q0,2
0,12

j0

5
~9Q1,1

0,119Q1,1
1,024Q1,3

0,116Q1,3
1,0!50.

~33!

As in the above, we assume that the actual relaxa
process is a switch off of the probing field so that the syst
evolves from the equilibrium state, where bothH0 and H
existed, to another equilibrium, where onlyH0 remains. The
corresponding initial condition in a suspension of partic
with a finite magnetic anisotropy is

Q0,2
0,1~0!56S2~s!L2~j0!~j/j0!, ~34!

cf. Eq. ~30!. HereS2 is the ‘‘intraparticle’’ order paramete
that describes the orientation of the axisn with respect to the
magnetic momente. One may also say thatS2 is the order
parameter in a suspension where the particle magnetic
ments are perfectly aligned by an infinitely strong magne
field. A simple representation forS2 is

.

d

3-5
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S25
3

2 S d

ds
ln R2

1

3D , R~s!5E
0

1

exp~sy2!dy, ~35!

which follows from the general definition

S2l5R21E
0

1

P2l~y!exp~sy2!dy. ~36!

A. Weak bias field

Let us start with the case of a weak bias field. Estimatio
by the order of magnitude show that in this limit in Eq.~33!
the termsQ1,3 should be omitted, so that the modeQ0,2

0,1 re-
mains coupled toQ1,1

0,1 andQ1,1
1,0. The equations for the latte

follow from the general matrix equation~A1! and were de-
rived in Refs. @9,10#. Uniting all the equations, we get
closed set that describes dynamic birefringence in
crossed-field configuration,

t i
d

dt
Q1,1

0,11Q1,1
0,150, t'

d

dt
Q1,1

1,01Q1,1
1,050,

2tB

d

dt
Q0,2

0,116Q0,2
0,15

9j0

5
~Q1,1

0,11Q1,1
1,0!. ~37!

Here the relaxation times are the effective parameters in
porating contributions from the diffusion with respect to bo
external~mechanical! and internal~magnetic! rotary degrees
of freedom of the particles. They are defined as

t i
215tB

211t10
21 , t'

215tB
211t11

21 . ~38!

For them simple but fairly good approximations have be
developed. In particular, we take

t105tD

es21

2s S Aps

11s
122s21D 21

, ~39!

t1152tD

12S2

21S2
,

as proposed in Refs.@15# and @8#, respectively.
The initial conditions for the set~37! determined with the

appropriate accuracy write

Q1,1
0,1~0!5

2

3
x ij, Q1,1

1,0~0!5
4

3
x'j, Q0,2

0,1~0!5
2

5
S2jj0 ,

~40!

where the components of the particle magnetization are
sented with the aid of the corresponding static magnetic
ceptibilities:

x i5
1

3
~112S2!, x'5

1

3
~12S2!. ~41!

The indices here refer to the direction of the probing fieldH
with respect to the anisotropy axis of the particle. Note a
that thus definedx do not depend on the bias field.
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From Eqs.~37! and~40! one sees that with respect to th
fields the orientational order parameterQ0,2

0,1 scales asjj0.
The sum (Q1,1

0,11Q1,1
1,0), which scales asj, enters the equation

for Q0,2
0,1 multiplied byj0 and plays there the role of a drivin

force. Therefore, both magnetization components, longitu
nal and transverse with respect to the anisotropy axis, af
Q0,2

0,1. This fact is easy to understand if one recalls that in o
study the laboratory framework is built on the directions
the bias and probing fields and not on the internal axes of
particles. Entering the equation in a symmetrical way,
magnetization modes have different relaxation properties
follows from expressions~38! and ~39!.

Let us first consider the motion ofQ1,1
1,0. From Eqs.~35!

and ~39! it follows that t11 never exceedstD . In turn, the
latter is rather short in comparison withtB . Thence, accord-
ing to the second of Eqs.~38!, the relaxation timet' is
always of the order oftD or less~for s@1).

The effect of motion of the componentQ1,1
0,1 is quite dif-

ferent due to the timet10 that enters the expression fort i .
Recalling thatQ1,1

0,1 characterizes the perturbation of the pa
ticle magnetization that is parallel to the anisotropy axis, o
recognizes int10 at s.1 the activation-type time of the
Néel superparamagnetism. Due to the exponential dep
dence,t10 changes dramatically with temperature and, as
latter goes down, passes from a fast isotropic diffusion of
vector e, where t10;tD , to the regime of completely
frozen-in magnetic moment (t10→`). In the intermediate
temperature ranget10 may become comparable withtB ,
thus changing considerably the effective timet i . However,
due to the exponential factor in the functiont10 the range of
comparability is very narrow. In other words, almost alwa
only one of the two regimes is possible: eithers is small
yielding t10;tD that leads tot i;tD!tB or s is large, and
one hast i;tB .

Solving Eqs.~37! with initial conditions~40! for a switch-
off process, one finds

Q0,2
0,1~ t !5

1

5
jj0H 3x it i

3t i2tB
e2t/t i1

6x't'

3t'2tB
e2t/t'

1F2S22
3x it i

3t i2tB
2

6x't'

3t'2tB
Ge23t/tBJ . ~42!

The limiting cases of Eq.~42! can be considered using th
relations

t i5t'5tD for s!1,

t i5tB , t'5tD for s@1. ~43!

In particular, one finds that ats→` formula ~42! transforms
into expression~24! obtained for a MF of magnetically har
particles if one setsb2,15Q0,2

0,1.
The integral relaxation time for the process described

Eq. ~42! is found via definition~25! and writes

t int
(2)5

tB

3
1

x it i12x't'

2S2
.

tB

3
1

x it i

2S2
, ~44!
3-6
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where the last simplification is justified due to the smalln
of x't' in comparison to the respective longitudinal com
nation. In Fig. 2 we plott int

(2) calculated numerically. To com
pare the exact curve with the asymptotic estimations, le
apply to Eq.~44! relations ~43! and then tend to the low
frequency or ‘‘kinetic cutoff’’ limit, i.e., settD50. This
gives

t int
(2)5tBH 1/3 for s!1,

5/6 for s@1.
~45!

From Fig. 2 one sees that at the high anisotropy ends
@1) the curve behaves as expected: it tends to the h
dipole regime witht int

(2)55tB/6, see Eq.~26!. From closer
inspection it follows that at certains the relaxation timet int

(2)

passes through a weak maximum and then approache
limiting value from above. Ats tending to zero the numeri
cally evaluated curve first tends to 1/3, as predicted by
~45!, but then inflects and begins to ascend. The occur
minimum does not have any physical meaning though. I
just an indication that our definition of IRT does not apply
the case because when exciting an assembly of perfe
magnetically isotropic particles by a pulse field, both init
and final orientational order parameters are zeros. Howe
the estimations done ats!1 prove that as long as the pa
ticle magnetic anisotropy satisfies the conditions*tD /tB
!1, the limit given by the first line of Eq.~45! remains
valid.

FIG. 2. Integral relaxation time under weak bias field as a fu
tion of s by Eq. ~44!, horizontal asymptote ist int

(2)/tB55/6; for an
explanation of the behavior in the smalls range see the text.
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We remark that the approximation we deal in allows
full for the fact that the profile of the magnetic potenti
energy of the particle consists of two wells of equal dep
and the magnetic moment may occupy either of them.
other words, both the interwell and intrawell transitions
the magnetic moment are accounted for. On the other h
the effect of the external field on the particle potential ene
is neglected here.

B. Strong bias field

Another limiting case is the one where the bias fieldH0 is
strong and, in particular, stronger than the anisotropy fi
Ha52Ea /IVm . Under this condition, the profile of the mag
netic potential energy of the particle has only one minimu
This justifies the possibility to take the solution of Eq.~4! in
the form of a trial function

W~e,n,t !5W0@11a1~ t !X1
1~e,h!1a2~ t !X2

1~n,h!#,
~46!

as is done in the effective-field method@7#; hereai are the
adjustable parameters. In Eq.~46! the equilibrium distribu-
tion function W0 is defined with the energy~1! in the full
configurational space of the system,

W05Z21exp@j0~e•h!1s~e•n!2#, ~47!

Z516p2R~s!
sinhj0

j0
.

In view of Eq. ~46!, the first two moments of the nonequ
librium distribution function, which are the principal items o
the study, write

Q1[^X1
1~e,h!&, Q2[^X2

1~n,h!&. ~48!

Here in the notations forQ we have reduced the number o
indices to the necessary minimum and will use this conv
tion from now on.

Substituting expansion~46! in Eqs. ~48!, one gets a 2
32 matrix relationship,

Qi5Nikak , ~49!

which expresses the observable statistical moments via
effective fields. The coefficients in Eq.~49! are

-

e

N115^X1
1~e,h!X1

21~e,h!&05~2/j0!L1~j0!,

N125N215^X1
1~e,h!X2

21~n,h!&05~6/j0!L2~j0!S2~s!, ~50!

N225^X2
1~n,h!X2

21~n,h!&05~6/35!@715L2~j0!S2~s!212L4~j0!S4~s!#,

where the angular brackets denote averaging over the equilibrium distribution~47!.
The equations for the longitudinal~with respect to the bias field! component of the magnetic moment (Q1) and for the

component of the orientational order parameter in the same direction (Q2) follow from Eq. ~4! on substituting there the
effective-field expansion~46!, multiplying it from the left by firstX1

1 and thenX2
1 and performing integrations. By that, on

arrives at the relationship
3-7
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d

dt
Qi52G ikak , ~51!

with the following matrix of the kinetic coefficients:

G115S 1

2tB
1

1

2tD
D ^@ ĴeX1

1~e,h!#@ ĴeX1
21~e,h!#&05S 1

tB
1

1

tD
D21L2~j0!

3
,

G125G215
1

tB
^@ ĴeX1

1~e,h!#@ ĴnX2
21~n,h!#&05

3

tB
S2~s!

3L1~j0!12L3~j0!

5
, ~52!

G225^@ ĴnX2
1~n,h!#@ ĴnX2

21~n,h!#&05
9

tB

1415L2~j0!S2~s!116L4~j0!S4~s!

35
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Eliminating the effective fieldsai from Eq. ~51! with the aid
of Eq. ~49!, one arrives at the closed matrix relaxation equ
tion

d

dt
Qi52G i l Nlk

21Qk , ~53!

for which the initial conditions describing a switch off of th
probing field are

Q1~0!5N11j, Q2~0!5N12j. ~54!

Solution of Eq.~53! yields two eigenmodes, whose rela
ation times are ‘‘mixtures’’ oftB andtD . Using once again
the definition of IRT, we derive the expression for the in
gral relaxation time of the orientation order parameter in
form

t int
(2)~j0 ,s!5

G11N22N121G22N11N122G12~N11N221N12
2 !

~G11G222G12
2 !N12

,

~55!

where the coefficientsNik andG ik are determined by formu
las ~50! and ~52!, respectively.

A useful simplification of the obtained formula is to ten
to zero the ratio

«5tD /tB5hm /h5I /6agh ~56!

of the magnetic to usual viscosities, see Eqs.~2!. Actually, in
experiments with magnetic suspensions one is close eno
to this situation. Indeed, substituting in Eq.~56! the typical
valuesI 5500 G andg51.73107 Oe21 s21, we arrive at
the estimate

«5531026/ah,

which depends on the material constantsa andh of a par-
ticular sample. The values ofa in dispersed particles ar
usually about 0.01–0.1, sometimes rising to several ten
percent. The fluid viscosityh ranges from 1022 to 10 Ps,
thus covering a variety of fluids from water to glycerin
Combining these numbers, we see that the correspon
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values of« fall between 531026 and 531022, always re-
maining far less than unity. Under this condition,G11 ap-
pears, see Eqs.~52!, to be the sole leading term. Tending it
infinity reduces Eq.~55! to

t int
(2)~j0 ,s!5

N22

G22

5
2

3
tB

715L2~j0!S2~s!212L4~j0!S4~s!

1415L2~j0!S2~s!116L4~j0!S4~s!
.

~57!

This formula yields the relaxation time of the orientation
order parameter in the case of a MF, in which particles h
zero magnetic viscosity. The latter means that any trans
rotation of the magnetic moment does not to a slightest
tent entrain the body of the particle and vise versa. Tha
why we term this kinetic decoupling of the vectorse andn a
‘‘cutoff.’’ Actually, the ‘‘kinetic cutoff’’ limit is applicable to
the processes whose reference times are much longer
tD . Then one may consider that with respect to the inter
degrees of freedom the equilibrium is attained in zero tim
Note that Eq.~57! can be obtained straightforwardly if on
takes the trial function in a simplified form: settinga150 in
Eq. ~47!, thus assuming instantaneous magnetic relaxat
This approximation was used by Cebers in Ref.@18#. One
has to understand clearly, however, that the kinetic freed
of a magnetic moment does not at all mean a comp
breakdown of its orientational interaction with the anisotro
~geometry! axis. The equilibrium part of this interaction tha
is described by the cross term}(e•n)2 in the particle energy
~1!, can be arbitrarily strong even at«50.

At the first sight, the relaxation timet int
(2) given by formula

~55! or ~57! seems to depend on both the bias fieldj0 and the
anisotropy parameters as if on independent variables. How
ever, it is not entirely so. Being derived in the framework
the effective-field method, these formulas remain corr
only in the rangej0.2s, i.e., when the absence of magne
metastability in the particle is ensured. That is why, for e
ample, by tendings→` whilst keepingj0 finite, one never
gets the relaxation time for a hard-dipole particles given
Eq. ~27!. However, for magnetically soft particles the ‘‘ki
netic cutoff’’ approximation~57! has all the grounds to be
quite useful.
3-8
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In this connection we remark that a model similar to E
~51! has been proposed in Ref.@19# and applied there to
account for the bias-field dependencies of the orientatio
relaxation time. Being justified in the rangej0.2s, when
used unmodified beyond this limit it did not render reaso
able results.

C. Arbitrary bias field: Heuristic model

To get a description for the birefringence of a MF wi
arbitrary relation between the material parameters, one ha
be able to solve the full set of equations~A1! for whateverj0
ands. This work, although it does not seem fundamenta
impossible, would require a really huge amount of time a
computer resources. This compels us to try to simplify
task, making use of certain qualitative considerations.

We base the model on the following heuristic grounds.
already mentioned, of the magnetization modes affecting
refringence one is rather fast and due to that does not
tribute to the relaxation of the orientation order parame
With allowance for this fact, the set~53! was reduced to jus
two equations. In the latter all the contribution of the intern
magnetic mode is ‘‘embodied’’ in the relaxation timetD that
enters the elementG11 of the relaxation matrixG ik , see Eqs.
~52!. Leaving all the formal scheme of Eqs.~46!–~56! intact,
we account for the consequences of the possible magn
metastability making inG11 just one replacement. Namely,

tD ⇒ t̃D~j0 ,s![t int
(1) , ~58!

wheret int
(1) is the integral relaxation time for the longitudin

magnetization of a uniaxial superparamagnetic particle in
case, where the direction ofH0 coincides with that ofn. This
quantity determined numerically in Ref.@16# is plotted in
Fig. 3 as a function of the dimensionless parameter 1/s}T
and the temperature-independent argumentj0 /s}H0. In
weak external fields the dependencet̃D(1/T) closely re-
sembles the usual Ne´el exponential ascend. As the bias fie
j0 grows, the steepness of the increase gradually goes d
We remark that one of the prototypes of the functiont int

(1) was
proposed in Ref.@17#.

Making replacement~58! in Eq. ~56!, one arrives at the
effective parameter«̃(j0 ,s)5 t̃D /tB . Unlike the seeding
value« that, as mentioned, in all physically meaningful sit
ations is small, the modified«̃ can be of arbitrary magnitude
Apparently, small«̃ mean magnetic softness of the particl
while large«̃ correspond to hard magnetic dipoles. Introdu
ing this effective parameter in the elementG11 and, accord-
ingly, by means of Eq.~55!, in the integral relaxation time
one can present the latter in the form
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t int
(2)5

c11 «̃c2

c31 «̃c4

tB , ~59!

where expressions for the dimensionless functio
c1 –4(j0 ,s) follow from Eqs.~50! and~52!. Since allc i are
constructed of nonsingular functionsLk(j0) and Sk(s),
wherek52,4, the relaxation time given by expression~59! is
of the order oftB or, at strong bias fields,tB /j0. The limit-
ing forms follow from expanding Eq.~59! with respect to«̃,

t int
(2)

tB
55

c1

c3
F11 «̃S c2

c1
2

c4

c3
D G→ c1

c3
for «̃!1,

c2

c4
F11

1

«̃
S c1

c2
2

c3

c4
D G→ c2

c4
for «̃@1.

~60!

The first line of this formula corresponds to the case of we
kinetic coupling, and, as it should be, its limit at«̃50 coin-
cides with expression~57! obtained in a plain effective-field
approximation. Note that at lows the renormed«̃ does not
differ much from real« that is small. Besides, at lows the
conditionj0.2s is satisfied for low enoughj0. With regard
to both those circumstances we conclude that the ‘‘kine
cutoff’’ limit given by Eq. ~57! works for practically anyj0.
Changing it for the first line of Eq.~60! makes the expressio
just a bit more accurate.

The second line of Eq.~60!, if to write it explicitly in
terms ofLk(j0) andSk(s) functions through Eqs.~50! and
~52!, is rather cumbersome. The limiting behavior at«̃5` is
rendered by the formulas

FIG. 3. Integral relaxation time of magnetization as a functi
of the dimensionless temperature 1/s and bias-field strengthj0 /s,
after Ref.@16#.
t int
(2)

tB
U

«̃5`

55
5

6
2F 31

420
1

S2~s!

252
2

S2
2

40Gj0
21O~j0

4! for j0!1,

2

j0
1

6S2

6S22s~21S223S2
2!

1

j0
2

1O~1/j0
3! for j0@1.

~61!
3-9
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They prove that for bothj0 small and large the function~61!
is very close to that describing the bias-field dependenc
the birefringence relaxation time in a MF of hard dipole
Moreover, the undertaken numeric calculations show t
these functions stay close at anys as well.

Since formula~59! proves to have a correct behavior in a
the relevant limiting cases, we consider it to be a reason
interpolation expression for arbitraryj0 ands including the

range of magnetic metastability, wherej0,2s. At «̃;1 a
specific crossover in the dependencet int

(2)(j0) should occur:

the hard-dipole behavior at«̃@1 changes for the ‘‘kinetic

cutoff’’ one at «̃!1. Examples of the dependencies obtain
with the aid of Eq.~59! are given in Fig. 4 as two families o
curves differing by the value of the seeding kinetic coupli
parameter«. The graphs confirm the reliability of the con
structed interpolation in more detail. Ats;1 and lower~al-
most isotropic particles! the curves just slightly deviate from
the asymptotic resultt int

(2)(j0,0)5tB/3, that would have made
a horizontal line in the plots. At high anisotropy (s@1), the
curves closely approach the dotted contour that reflects
hard-dipole limit. Positioning of the starting~at j050)
points of all the curves inside the interval marked by t
starting points of the limiting~marker! contours proves tha
however smalltD ~or corresponding«) may be, its presence
is crucial to obtain a correct relaxation time at larges. In-
deed, for a finitetD the timet̃D at low bias fields due to the
exponential dependence incorporated int int

(1) , see Fig. 3, at
s; ln(1/«) by the order of magnitude reachestB . Compare,
for example, respective curves 2 in Figs. 4~a! and 4~b!. For
the particles with«51023 the anisotropy parameters55 is
yet too small, and the starting point of curve 2 in Fig. 4~a!
virtually coincides with the value 1/3 yield by the ‘‘kineti
cutoff’’ limit. At the same value ofs, curve 2 in Fig. 4~b!,
i.e., for«51022, branches off the vertical axis at a value th
exceeds the asymptotic result by about 20%. For respec
curves 3 corresponding tos510 the effect is yet more pro
nounced. Here the curve for«51023 starts already at the
value that is considerably higher than 1/3, but on the ot
hand, it still remains well below the curve that describes
case«51022. At yet highers, see the respective curves
the starting point of the functiont int

(2)(0,s)/tB approaches
and then becomes indistinguishable from the hard-dipole
sult that equals 5/6, see Eq.~26!. On the contrary, the startin
point for the integral relaxation time in the ‘‘kinetic cutoff
limit ~when one sets«[0) never exceeds 1/3 however hig
s may be, see diamond markers atj050 in Figs. 4~a! and
4~b!.

An important issue is the behavior oft int
(2) at high bias

fields j0@1. As follows from the above-presented consid
ations, in the hard-dipole model one hast int

(2)}1/j0. For the
case of particles with finite magnetic anisotropy we assu
that at sufficiently high bias fields (j0.2s) magnetic meta-
stability is suppressed. Due to that the renormed timet̃D
does not differ from the real onetD and the behavior of the
system is close to that in the ‘‘kinetic cutoff’’ limit. This
grants validity to the effective-field result~57!. Expanding it
to the first order in 1/j0, one gets
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t int
(2)~j0 ,s!

tB
U

«̃50

5g1~s!1
g2~s!

j0
, ~62!

where the coefficientsg are expressed as

g1~s!5
2

3

715S2~s!212S4~s!

1415S2~s!116S4~s!
, ~63!

g2~s!5
70

3

23S2~s!128S2~s!S4~s!180S4~s!

@1415S2~s!116S4~s!#2
,

and have the following limiting behavior:

g1~s!55
1

3
1

1

63
s2

5

441
s21••• for s!1,

1

s
1

1

s2
2

1

s3
1••• for s@1,

~64!

g2~s!55 2
1

21
s1

160

1323
s21••• for s!1,

22
1

s
212s22

23

s3
1••• for s@1.

Accordingly, the behavior of the integral relaxation time d
scribed in the leading order is

t int
(2)

tB
U

«̃50

5H 1

3
2

1

21

s

j0
for s!1,

1

s
1

2

j0
for s@1.

~65!

Thus we conclude that the birefringence relaxation proces
are quite different for the particles with low and high ma
netic anisotropy. For the former,t int

(2) is abouttB/3 and prac-

FIG. 4. Modified integral relaxation time of orientation as
function of the dimensionless bias fieldj0. Solid curves are calcu-
lated for«51023 ~a! and«51022 ~b! at the anisotropy paramete
s52 ~1!, 5 ~2!, 10 ~3!, and 20~4!. Lines of markers show the
limiting contourss5`: full circles correspond to the hard dipol
case described by Eq.~32! while diamonds markt int

(2) in the ‘‘kinetic
cutoff’’ limit, i.e., «[0.
3-10
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tically independent of the bias field. For highs the relax-
ation time in general obeys the hyperbolic law 2/j0 well
known for magnetically hard (s5`) particles. However,
due to the presence of a term independent ofj0, the limit of
the relaxation time atj0→` is always finite and not zero a
it is in the case of hard dipoles.

We remark that the found existence of a finite limit oft int
(2)

at j0→` has an important consequence with respect to
experiment interpretation. Normally, when anticipati
power laws, the measurement data are plotted in dou
logarithmic coordinates. In the case of a hard dipole t
gives a straight line, irrespective of whether magnetic or o
entational susceptibility is studied. If, however, the dipo
has a finite rigidity so that the relaxation time at high b
fields is described by the second line of Eq.~65!, the double
logarithmic representation has to be used with caution.
deed, as Eq.~65! shows, a plot ln(tint

(2)) may be close to a
straight line only forj0,2s. But this range might be empt
if s is not large enough since Eq.~65! is theasymptoticform
valid for j0@1. In the range of its unquestionable validit
i.e., where bothj0 , s@1, the functiont int

(2)(j0) plotted in
double logarithmic coordinates gives a line with a slope t
gradually changes from unity to zero as the term}1/j0 di-
minishes in comparison to the constant one. These cons
ations equally apply if one changes the roles ofj0 ands, and
plots the relaxation time as a function ofs at a givenj0.

In the linear response theory the relaxation time does
depend on the magnitude of the probing field. If the syst
is single mode, then the relaxation time derived for a tr
sient process can be equally used to write the stationary
lution under the action of an ac probing field. For a syst
with multimode response the independence from the prob
field amplitude, of course, holds but the reference~integral!
times might differ depending on the way of probing, pulse
ac. To study a MF in a crossed-field situation where
probing field is alternating and not pulse, one has to solve
equation

d

dt
Qi1G i l Nlk

21Qk5G i1j~ t !, ~66!

cf. Eq.~53!. To obtain a stationary solution, it suffices to ta
j5j (0)exp(2ivt), substitute it in Eq.~66!, and resolve the
resulting matrix set. This yields a one-column matrix w
complex elementsQ1 andQ2. Setting the amplitudej (0) of
the probing field equal to unity~which is here equivalent to
differentiation! we get the respective dynamic susceptib
ties. In particular,Q2 is the complex susceptibility of the
orientation order parameter to an external magnetic fi
With regard to the geometry of the magneto-optical exp
ment in crossed fields@6#, one finds that the theoretical qua
tity proportional to the measured transmitted light intensity
the square of the orientational order parameter. Accordin
under stationary oscillations, the effective dynamic susce
bility that is measured is the square of the susceptibilityQ2.
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V. DISCUSSION OF THE RESULTS

In Ref. @6# the dynamics of birefringence is discussed
terms of some characteristic time derived from the exp
mental data in the following way. The intensityI 2v of the
light transmitted by the sample under the joint action
crossed dc and ac fields is plotted as a function of freque
and the frequencyv* is found, at which I 2v(v* )
5 1

2 I 2v(0). The quantity inverse tov* is taken as a refer-
ence response time and is denoted astexp.

To apply the developed model to the experiment@6#, we
construct a direct theoretical analog oftexp. For that we take
the solution of Eq. ~66!, impose on it the condition
Q2

2(v* )5 1
2 Q2

2(0), andobtainv* as the function ofj0 and
s by resolving the pertinent transcendental equati
The inverse of the foundv* is the sought for reference tim
that we denote ast1/2. A set of curves presenting the ob
tained function is given in Fig. 5 together with dash-dott
straight lines rendering the power law 1/j0 inherent to a hard
dipole and asymptotes~dashed lines! at largej0 obtained
numerically from expansion of solutions of Eq.~66! at j0

@1. As is intuitively expectable,t1/2 is close to the integra
relaxation timet int

(2) defined in Sec. IV C. A direct compari
son presented in Fig. 6 supports this conclusion; the oc
ring similarity transforms into coincidence in the high-fie
end.

In Ref. @6# in the crossed-field geometry two sets of ma
netic fluid samples were investigated. Namely, there w
five samples containing cobalt ferrite nanoparticles and
samples whose magnetic phase consisted of maghe
nanoparticles. In the cobalt ferrite grains the magnetic ani
ropy is of the volumetric origin and rather strong. Therefo
their behavior under field should resemble that of hard
poles. On the contrary, for maghemite grains, where the
isotropy is known to be of the surface origin, and mu
weaker, the response is expected to resemble that of
dipoles. The particle size distributions were determined
Ref. @6# from measurements of the equilibrium magnetiz
tion and were found to be close to log-normal ones descri
by the size parameterd0 and dimensionless widths. The
magnetization of the cobalt ferrite is taken to beI
5350 kA/m and that for maghemite particlesI
5320 kA/m. The volume energy density of uniaxial ma
netic anisotropy for the cobalt ferrite isKV5500 kJ/m3, the
respective surface energy density for maghemite isKS52.8
31025 J/m2. Using these numerical values, one can e
mate the anisotropy parameterss. We do that assuming tha
the particle magnetic volume isVm5(p/6)d3 and the par-
ticle surface area that matters for estimation of the anisotr
of the surface origin isSm5pd2, where the overline mean
averaging over the corresponding log-normal histogram. T
initial histogram data and the results of our estimations
given in Table I @20#. As in Ref. @6#, we mark the cobalt
ferrite samples by ‘‘C’’ and the maghemite ones by ‘‘M .’’

In the qualitative aspect we remark a full agreement
tween the shapes of dispersion curves derived from
finite-anisotropy model by solving Eq.~66! and the experi-
3-11
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mental ones given in Ref.@6#. Presenting those dynamic su
ceptibilities in the form of Argand diagrams (ImQ2

2 plotted
against ReQ2

2) one becomes aware of their splitting wi
respect to bothj0 and s. Qualitatively, such splitting is
clearly visible in the experimental Argand diagrams of R
@6# but was never accounted for. In our theory, splitting is
natural consequence of the finiteness of the anisotropy o
particles. Depending on whethert̃D is greater or smaller than
tB , the Argand loops might either ‘‘deflate’’ or ‘‘inflate’
with respect to the reference~single-time! contour. The
crossover of the relaxation regimes that takes place att̃D
'tB provokes, as its consequence, a peculiar reentrant

FIG. 5. Bias-field dependencies of the theoretical analogt1/2 of
the reference relaxation timetexp. The anisotropy parameter iss
57.5 ~a!, 10 ~b!, 20 ~c!, and 35~d!; for all the curves«51022.
Dashed-dotted lines indicate a simple power law 1/j0; dashed lines
show the asymptotes~large j0) obtained numerically from the so
lutions of Eq.~66!.

FIG. 6. Comparison of the bias-field dependencies of the in
gral relaxation timet int

(2) ~dashed lines! and the reference relaxatio
time t1/2 ~solid lines! for s52 ~1!, 5 ~2!, 10 ~3!, 20 ~4!; for all the
curves«51022.
02120
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havior ~‘‘breath’’ ! of the Argand loops. However, the analy
sis of this interesting effect is beyond the scope of
present work, and will be given elsewhere.

With regard to the quantitative comparison, from Table
we conclude that the cobalt ferrite sampleC1 with its s
.200 may be well treated in the hard-dipole approximatio
while for sampleC3 that hass;50 some corrections may b
‘‘visible.’’ Using this scheme, forC1 we calculate the func-
tion t1/2(j0) for s5` ~see Fig. 1! while for C3 calculation
is done according to the full procedure fort1/2. Considering
tB as an adjustable parameter, we evaluate it on the ‘‘chi-
the-eye’’ basis and plot the results in Fig. 7~a!. The achieved
agreement between theory and experiment is satisfactory
absolute values of the Brownian relaxation times that
have got in our interpretation aretB54.1 ms for C1 and
tB50.43 ms forC3. Figure 7~b! shows the same adjustme
for samplesC2 andC4, where we gettB51.64 ms andtB
50.54 ms, respectively.

In Fig. 8 the data on the cobalt ferrite samplesC1 to C4
are presented in double logarithmic coordinates. It is instr
tive to see, to what extent the obtained curves look l
straight lines~hard-dipole model! and to what extent they
deviate at lower fields~below the cutoff introduced in Ref
@6#!.

In Ref. @6#, on the basis of qualitative considerations, t
idea was inferred that for magnetically soft nanoparticles

-

TABLE I. Size distribution and anisotropy parameters of t
samples.

Sample d0 ~nm! s s j0 /H0 ~m/kA!

C1 12.7 0.35 225 0.197
C2 9.0 0.20 55 0.050
C3 8.7 0.16 47 0.043
C4 7.0 0.20 26 0.022
M1 9.4 0.10 2.0 0.043
M2 9.2 0.15 2.0 0.043

FIG. 7. Comparison of the bias-field dependencies of the re
ence relaxation timet1/2 with the experimental measurements o
the cobalt ferrite samples; for all the curves«5231024. ~a!
samplesC1 ~full circles! andC3 ~diamonds!; the estimated values
of the rotary diffusion time aretB54.1 ms (C1) and tB

50.43 ms (C3). ~b! SamplesC2 ~full circles! andC4 ~squares!; the
estimated values aretB51.64 ms (C2) andtB50.54 ms (C4).
3-12
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soon as the external fieldH0 exceeds the internal on
Ha , the relaxation timetexp in a MF becomes independen
of H0. The maghemite ferrofluid samplesM1 and M2
are good candidates for the test: as Table I shows, they
have s;1. Since the samples under consideration
the ferrofluids based on glycerine whose viscosity ish;10
Ps, the estimate for the ratiotD /tB5« gives 1024–1025.
With s;1 this means that both MF samples are very clo
to the ‘‘kinetic cutoff’’ limit. Under these conditions the
theoretical relaxation timet1/2 is but weakly dependen
on the bias field j0 that agrees well with the wea
dependence oftexp on H0 experimentally found in Ref.@6#
and justifies the hypothesis proposed therein. In Fig. 9
theoretical curves obtained with Eq.~57! at s52 are com-
pared with the data of Ref.@6# on the maghemite sample
The numerical values of the rotary diffusion time that we g
from the adjustment aretB51.2 ms for sampleM1 andtB
52.2 ms for sampleM2. According to the present mode
texp should be virtually independent ofH0 in the low-field
range as well.

VI. CONCLUSIONS

Theory for dynamic birefringence in a magnetic fluid su
jected to a joint action of crossed bias~constant! and probing
~pulse or ac! fields is developed. Under the considered fie
configuration the induced birefringence is linear with resp
to the probing field, so that the linear response approxim
tion is possible. The suspended nanoparticles are assum
possess finite magnetic anisotropy of the easy axis ty
whose direction coincides with the major geometry axis.
allow for the finiteness of the anisotropy, the general Fokk
Planck equation that takes into account both internal m
netic and external mechanical degrees of freedom of the
ticles is used.

The particle orientation dynamics, which is in gene
a multimode process, is described in terms of the integ
relaxation times for the two lowest statistical moments

FIG. 8. Comparison of the theoretical bias-field dependencie
the reference relaxation timet1/2 ~solid lines marked with the
sample identifiers! with the experimental measurements on the
balt ferrite samplesC1 ~empty circles!, C2 ~triangles!, C3 ~dia-
monds!, andC4 ~squares!; for all the curves«5231024.
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the distribution function, namely, the magnetization a
the orientation order parameter. The results for the limit
cases of weak and strong bias fields are given in
analytical form. For the intermediate case an interpolat
expression for the integral relaxation time of birefringence
proposed and proven to have a physically reasonable ov
behavior.

The developed description is applied to the experimen
data on crossed-field birefringence of MF samp
with nanoparticles of two types: magnetically hard~cobalt
ferrite! and magnetically soft~maghemite!. Observations evi-
dence that the differences in the particle properties are es
tially reflected in the dynamics of macroscopic birefringen
of the samples. The proposed theory appears to be in
qualitative agreement with all the experimental data av
able.
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APPENDIX

The general matrix equation of the problem that det
mines the amplitudesQl l 8

mm8 is obtained by substitution of the
spherical harmonic expansion~12! into the Fokker-Planck
equation~4!. After that the equation is multiplied from th
left by Xl

m(e,n)Xl8
m8(n,h), and, finally, integrated with re-

spect to bothe andn. The result is

of

-

FIG. 9. Comparison of the theoretical bias-field dependencie
the reference timet1/2 with the experimentaltexp for the maghemite
samplesM1 ~circles! andM2 ~squares!. The lines correspond to the
anisotropy parameters52 ~see Table I! and«5231025. The ref-
erence rotary diffusion times aretB51.2 ms (M1) and tB

52.1 ms (M2).
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d

dt
Ql ,l 8

m,m81
1

2tD
l ~ l 11!Ql ,l 8

m,m81
1

2tB
l 8~ l 811!Ql ,l 8

m,m82
s

tD
F ~ l 11!~ l 1m21!~ l 1m!

~2l 21!~2l 11!
Ql 22,l 8

m,m8 1
l ~ l 11!23m2

~2l 21!~2l 13!
Ql ,l 8

m,m8

2
l ~ l 2m12!~ l 2m11!

~2l 11!~2l 13!
Ql 12,l 8

m,m8 G2
j

2tD~2l 11!~2l 811!
H ~ l 11!~ l 1m!@~ l 82m811!Ql 21,l 811

m,m8 1~ l 8

1m8!Ql 21,l 821
m,m8 #2 l ~ l 2m11!@~ l 82m811!Ql 11,l 811

m,m8 1~ l 81m8!Ql 11,l 821
m,m8 #1

1

2
~ l 11!~ l 1m21!~ l 1m!@~ l 81m8

21!~ l 81m8!Ql 21,l 821
m21,m821

2~ l 82m811!~ l 82m812!Ql 21,l 811
m21,m821

#1
1

2
l ~ l 2m12!~ l 2m11!@~ l 81m821!~ l 8

1m8!Ql 11,l 821
m21,m821

2~ l 82m811!~ l 82m812!Ql 11,l 811
m21,m821

#2
1

2
~ l 11!~Ql 21,l 811

m11,m811
2Ql 21,l 821

m11,m811
!2

1

2
l ~Ql 11,l 811

m11,m811

2Ql 11,l 821
m11,m811

!J 2
j

2tB~2l 11!~2l 811!
H ~ l 811!~ l 81m8!@~ l 2m11!Ql 11,l 821

m,m8 1~ l 1m!Ql 21,l 821
m,m8 #2 l 8~ l 82m811!
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2
l 8~ l 82m812!~ l 82m811!@~ l 1m21!~ l 1m!Ql 21,l 811

m21,m821
2~ l 2m11!~ l 2m
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